

An Introduction to Rockets

-or-

Never Leave Geeks Unsupervised

Kevin Mellett 27 Apr 2006

What is a Rocket?

- A propulsion system that contains both oxidizer and fuel
- NOT a jet, which requires air for O2

400 BC – Steam Bird

100 BC – Hero Engine

- Celebrations
- Religious Ceremonies
- Bamboo Misfires?

Chinese Invent Fire Arrows 13th c

First True Rockets

- 16th c Wan-Hu
 - -47 Rockets

- 13th 16th c Improvements in Technology
 - English Improved Gunpowder
 - French Improved Guidance by Shooting Through a Tube "Bazooka Style"
 - Germans Invented "Step Rockets" (Staging)

 1687 Newton Publishes Principia Mathematica

"Every object persists in its state of rest or uniform motion in a straight line unless it is compelled to change that state by forces impressed on it."

"Force is equal to the change in momentum (mV) per change in time. For a constant mass, force equals mass times acceleration."

F=m a

"For every action, there is an equal and opposite re-action."

Newton's Third Law

MOMENTUM is the key concept of rocketry

- 1903 KonstantineTsiolkovsky Publishes
 - the "Rocket Equation"
 - Proposes Liquid Fuel

$$V = Ve * \ln \left(\frac{Mi}{Mf}\right)$$

- Goddard Flies the First Liquid Fueled Rocket on 16 Mar 1926
 - Theorized Rockets Would Work in a Vacuum
 - NY Times: Goddard
 "...lacks the basic physics ladeled out in our high schools..."

Dr. Goddard's 1926 Rocket

- Germans at Peenemunde
 - Oberth and von Braun lead development of the V-2
 - Amazing achievement, but too late to change the tide of WWII
 - After WWII, USSR and USA took German Engineers and Hardware

Mission Requirements

- Launch On Need
 - No Time for Complex Pre-Launch Preps
 - Long Shelf Life
- Commercial / Government
 - Risk Tolerance
 - R&D Costs

Mission Requirements

- Payload Mass and Orbital Objectives
 - How much do you need, and where do you want it? Both drive energy requirements.
- Low Earth Orbit (LEO)
- Geostationary Transfer Orbit (GTO)
- Geostationary Orbit (GEO)
 - 35,785 kilometers (22,236 miles)
- Beyond Earth
 - Transfer orbits change based on velocity

Some Orbital Measurements

Alt (mi)	Radius (mi)	Circum (mi)	Period (hr)	Speed (mi/hr)	Energy/Kevin (Mj)	Energy (gal-gas)
100	4,076	25,615	1.46	17,444	2,874	22.1
22,326	26,302	165,265	24.0	6,867	5,186	39.9

Self Eating Watermelon

Approximately 91% of Liftoff Mass is Propellant

- Approximately 3% is Vehicle
- Approximately 6% is **Payload**

Lift Off Mass

28.5 Equatorial Orbit

51.6 Orbit (ISS)

Liquids vs. Solids

	Liquid	Solid
Complexity	High Speeds and Pressures	Very Simple
Controllability	Throttle-able	Committed Once Lit
Storability	Depends on Propellants	Long Duration
Handling	Toxic/Haz	Stable
Specific Impulse	Varies	Moderate

Liquids

	Cryos	Hypers	Hydro- carbons
Storability	Cryo Temps	Fair	Good
Handling	Hazardous	Toxic	Stable
Specific Impulse	440 – 460 s	260 – 290 s	265 - 300 s

Integration (NFL!)

- Actuators Hydraulic or Electrical
- Life Support Contingency Support
- Active Thermal Heating and Cooling
- Passive Thermal Protection and Control
- Telemetry Bandwith/Encryption
- Power Batteries/Solar/Fuel Cell
- Political and Other Considerations
- Etc...

Guidance Systems

UNSTABLE

Vectored Thrust

Aerodynamic Stability (Fire Arrows)

Center of Gravity & Center of Pressure

